
COMP0035	Tutorial	8:	Database	design
Please	refer	to	the	database	design	guide	on	Moodle	or	online.

In	this	tutorial	you	are	going	to	design	a	database	that	will	include:

new	data	implied	in	the	user	stories	and	application	design
data	from	the	data	set	which	includes	two	.csv	files,	one	containing	details	of	paralympic
events	and	one	containing	details	of	National	Olympic	Committee	country	code.

Data	set	fields

Event

Each	row	represents	the	details	for	a	Paralympics	event.

Attribute Example

Host	city Tokyo

Year 1964

Country Japan

Region JPN	(3-letter	code	representing	the	region)

Type Summer

Start 1964-11-08

End 1964-11-12

Participants	(M) 195.0	(total	male	participants)

Participants	(F) 71.0	(total	male	participants)

Participants 266	(total	participants)

Duration 4	(number	of	days	the	event	lasted)

Region

Each	row	represents	one	region	as	defined	by	the	National	Olympic	Committee.

https://nicholsons.github.io/comp0034-5/guide/database-design.html


Attribute Example

NOC JPN	(3-letter	code	representing	the	region)

region Japan,	the	region’s	name

notes any	notes	relating	to	the	region,	typically	blank

Application	design

The	following	is	one	possible	design	for	the	Paralympics	web	app	that	provides	information	on
different	events	and	allows	administrators	to	manage	the	underlying	data.	You	may	not	agree
with	the	design,	for	example:

should	the	functions	for	the	routes	for	Event	and	DataAdmin	be	split	into	separate
modules?	Is	cohesion	greater	if	the	event	related	functions	are	grouped	together?
should	the	functions	for	login,	logout	etc	be	part	of	the	Administrator	class?

To	uniquely	identify	an	event	you	currently	need	to	know	city,	year	and	type.

The	class	shape	has	been	modified	to	represent	a	Python	module	for	the	‘Controllers’.

Optional	parameters	for	the	URL	are	indicated	using	‘’	though	could	also	have	been	shown	as
‘?paramname=’.	Again,	this	is	not	textbook	use	of	the	class	diagram	shape	but	is	adapted	to
allow	us	to	display	useful	information.



List	of	routes:

Route HTTP Description

/login
GET,
POST

GET	returns	the	login	form
POST	Takes	the	login	form	values	and	validates	against
administrator	records	in	the	database	and	returns	the	data
management	page.

/logout GET Sets	login	status	to	False	and	returns	to	the	index	page

/register
GET,
POST

GET	returns	the	form	to	register	a	new	accont	
POST	Takes	the	login	form	values	and	if	valid,	creates	a	new
administrator	records	in	the	database.

/admin/event GET
Returns	a	page	of	all	events	with	the	option	to	update,	delete
or	add	new	event

/admin/region GET
Returns	a	page	of	all	regions	with	the	option	to	update,	delete
or	add	new	region

/event/ GET Displays	a	page	with	the	details	for	one	event

/event/ GET Displays	a	page	with	the	summary	for	all	events

/event/update GET
GET	Displays	a	form	of	fields	for	an	event	that	can	be	edited	
POST	Takes	the	changed	parameter	values	from	the	form
and	updates	the	database

/event/delete/ DELETE Deletes	the	identified	entry	from	the	database

/event/add
GET,
POST

GET	Displays	a	form	of	fields	for	an	event	that	can	be	edited	
POST	Takes	the	changed	parameter	values	from	the	form
and	updates	the	database

/region/update GET
GET	Displays	a	form	of	fields	for	a	region	that	can	be	edited	
POST	Takes	the	changed	parameter	values	from	the	form
and	updates	the	database

/region/delete/ DELETE Deletes	the	identified	entry	from	the	database

/region/add
GET,
POST

GET	Displays	a	form	of	fields	for	a	region	that	can	be	edited	
POST	Takes	the	parameter	values	from	the	form	and	adds	a
new	region	the	database

Activity	1:	Conceptual	design



Present	the	results	of	the	stage	as	an	ERD.	The	ERD	format	is	explained	in	the	database
design	guide.

1.	 Identify	the	entities	and	attributes.	You	the	data	set	detail	and	the	architecture	diagram.
If	you	did	not	have	an	architecture	diagram	then	you	could	use	the	data	driven	design
approach	and	identify	nouns	and	adjectives	from	the	requirements	to	identify	potential
entities	and	their	attributes.

2.	 Draw	the	entities	and	their	attributes	as	rectangles.
3.	 Identify	the	relationships	between	identities	and	draw	lines	between	the	entities	to

represent	these.
4.	 Identify	the	multiplicity	(one-to-many,	many-to-many)	and	draw	these	on	the	relationship

lines.

You	can	do	this	on	paper,	on	PowerPoint/Word,	or	there	are	links	to	a	few	free	online	tools	in
the	guide.	The	diagrams	in	this	tutorial	document	were	created	using	a	Mermaid	plugin	for
PyCharm.	Mermaid	creates	diagrams	in	markdown.

Activity	2:	Logical	design

Document	the	results	of	this	stage,	the	‘schema’,	as	an	ERD;	though	you	may	need	to	add
additional	details	that	the	ERD	doesn’t	allow.

Read	the	database	design	guide	section	on	normalisation	and	logical	design.

1.	Are	there	multiple	values	in	any	of	the	fields/attributes?

In	this	design,	none	of	the	fields	hold	multiple	values	so	there	are	no	changes	to	be	made.

If	there	were,	you	would	need	to	add	a	new	table.

2.	Identify	the	primary	key	for	each	table.

Primary	keys	can	be	composite	(ie	more	than	one	attribute	or	column	taken	together);	however
this	is	less	simple	to	implement	in	SQLite	and	will	be	easier	in	term	2	if	you	introduce	a	single
unique	identifier	in	your	design.

Points	to	consider:

The	unique	identifier	for	an	event	is	currently	a	combination	of	city,	year	and	type.
Is	email	address	unique?	It	could	be	a	unique	identifier	for	the	Administrator,	however
long	character	strings	or	variable	length	are	generally	considered	a	computationally
inefficient	key	field.	An	integer	that	can	be	autoincrement	is	typically	used.
The	region	field	has	a	3	character	unique	field,	the	NOC	code.	This	is	short	and	uniform
and	is	likely	reasonable	to	use	as	the	primary	key.

Add	‘PK’	next	to	the	primary	key	attribute(s)	for	each	table	to	show	which	is/are	the	primary
key.



2.	Where	there	is	a	related	entity	(table)	add	the	foreign	key

The	foreign	key	for	the	‘many’	side	of	the	relationship	will	be	the	primary	key	field	from	the
‘one’	side.

Add	the	field	to	the	table	and	add	‘FK’	next	to	it.

3.	Are	there	attributes	that	depend	on	more	than	just	the
primary	key?

‘Country’	is	in	both	tables.	In	the	Event	table	this	also	determined	by	‘region’	and	‘event_id’.
It	may	be	better	to	remove	this	field	from	Event	and	maintain	it	in	Region	only	(in	event	the
data	would	be	repeated	in	multiple	places,	in	Region	it	is	held	only	once).

Removing	‘Country’	improves	the	database	design	but	may	complicate	your	application	design
as	you	will	need	to	query	both	Event	and	Region	to	get	the	data	for	each	event.

There	is	no	‘right’	answer	to	this.	In	the	paralympics	data	it	may	be	better	to	leave	the	country
in	as	the	value	for	country	varied	from	the	official	NOC	region	name	(e.g.	UK,	United
Kingdom,	Great	Britain).

4.	Indentify	the	data	types

SQLite	data	type	definitions	are	flexible,	that	is	SQLite	will	attempt	to	match	the	provided
data	type	in	the	data	to	the	column	definition.

SQLite	will	support	most	of	the	variants	of	SQL	data	types	but	will	store	the	data	type	as	one
of	the	following:

NULL.	The	value	is	a	NULL	value.
INTEGER.	The	value	is	a	signed	integer,	stored	in	0,	1,	2,	3,	4,	6,	or	8	bytes	depending
on	the	magnitude	of	the	value.
REAL.	The	value	is	a	floating	point	value,	stored	as	an	8-byte	IEEE	floating	point
number.
TEXT.	The	value	is	a	text	string,	stored	using	the	database	encoding	(UTF-8,	UTF-16BE
or	UTF-16LE).
BLOB.	The	value	is	a	blob	of	data,	stored	exactly	as	it	was	input.

Consider	which	to	use	for	each	of	the	fields.	Add	the	data	type	to	each	attribute	in	the	ERD.

5.	Are	there	any	constraints?

Following	are	commonly	used	constraints	available	in	SQLite:

NOT	NULL	−	Ensures	that	a	column	cannot	have	NULL	value.
DEFAULT	−	Provides	a	default	value	for	a	column	when	none	is	specified.
UNIQUE	−	Ensures	that	all	values	in	a	column	are	different.
PRIMARY	KEY	−	A	combination	of	a	NOT	NULL	and	UNIQUE.	Uniquely	identifies

https://www.sqlite.org/datatype3.html


each	row	in	a	table.
CHECK	(expression)	−	Ensures	that	all	values	in	a	column	satisfies	certain	conditions.

Review	each	field	and	decide	which	constraints	need	to	be	added.	Add	any	constrains	to	your
ERD.

Review	and	iterate

Review	the	design	and	consider	if	any	further	changes	are	required.

In	the	example	conceptual	diagram	there	is	a	separate	‘Logo’	entity	that	will	be	used	for	the
event.	Paralympic	logos	have	an	image	file	and	the	logo	may	also	have	a	name.	These	are
usually	specific	to	each	event.	This	could	be	added	as	a	new	attribute	to	the	event	table	rather
than	a	new	table.

The	application	design	has	assumed	the	logo	will	be	stored	in	a	file	system	and	the	location	of
the	file	will	be	passed.	It	is	possible	to	store	images	in	a	database	as	a	BLOB.	Search	and	you
will	find	many	articles	on	the	merits	of	storing	images	in	a	database	or	a	file	system.	Read	a	few
articles,	understand	the	tradeoffs	and	make	a	decision!

Activity	3:	Review	the	application	design

Now	that	you	have	designed	the	database,	and	your	app	will	use	the	data	from	the	database
rather	than	the	.csv	file,	then	the	introduction	of	the	‘event_id’	field	should	simplify	some	of
your	functions	as	you	no	longer	need	3	fields	to	be	able	to	identify	an	event.

Depending	on	your	choice	of	how	to	handle	the	logo	files,	you	may	also	change	the	logo	class.

Potential	solutions

Conceptual	design

You	may	have	only	noted	the	attributes	and	not	the	data	types.	The	limitations	of	the	tool
used	to	create	the	diagram	mean	that	the	data	type	had	to	be	added.	These	datatypes	refer	to
the	SQLite	data	types,	not	the	Python	data	types	shown	in	the	application	design	diagram.

Most	diagrams	also	show	the	attribute	name	before	the	data	type.



Logical	design

Depending	on	your	choices,	yours	may	look	different	to	this.




	COMP0035 Tutorial 8: Database design
	Data set fields
	Application design
	Activity 1: Conceptual design
	Activity 2: Logical design
	1. Are there multiple values in any of the fields/attributes?
	2. Identify the primary key for each table.
	2. Where there is a related entity (table) add the foreign key
	3. Are there attributes that depend on more than just the primary key?
	4. Indentify the data types
	5. Are there any constraints?
	Review and iterate

	Activity 3: Review the application design
	Potential solutions
	Conceptual design
	Logical design



